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Abstract

We analyze the effects of geometrical restriction on the nuclear magnetization of spins diffusing in grossly inhomogeneous fields

where radio-frequency (RF) pulses are weak relative to the total field inhomogeneity, making the rotation angle space-dependent

and thus exciting multiple coherence pathways. We show how to separate the effects of restricted diffusion from the effects of the

pulses in the case when the change in the field experienced by a diffusing spin in the course of the experiment is small compared to the

RF magnitude. We then derive explicit formulas for the contribution of individual coherence pathways to the total magnetization in

arbitrary pulse sequences. We find that, for long diffusion times, restriction can dramatically alter the spectrum and the shape of a

particular echo, while for short times, the correction will be proportional to the pore space surface-to-volume ratio. We demonstrate

these results on the example of the early echoes of the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Diffusion in restricted geometries and inhomoge-

neous magnetic fields in nuclear magnetic resonance

(NMR) experiments has been extensively studied [1–11].

Most of the available literature treats the case when the

field inhomogeneity is weak relative to the strength of

the radio-frequency (RF) fields so that the excitation

bandwidth is large and all the pulses can be assumed to

be on resonance. In many systems of interest, however,
the fields are grossly inhomogeneous and off-resonance

effects become important. This is the case, for instance,

for the ‘‘inside-out’’ NMR of well-logging [12] and

materials testing [13] or for the stray-field NMR [14].

The Carr–Purcell–Meiboom–Gill (CPMG) and the

steady-state free precession sequences in such systems

were examined in some detail [15–18]. The rotation an-

gle due to a given pulse varies with position, and thus
every pulse generates multiple ‘‘coherence pathways,’’

each of which contains the history of some fraction of
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the magnetization over the entire pulse sequence. The

idea of expressing the total magnetization as a sum over
the contributing coherence pathways was due to Kaiser

et al. [19] who noted its usefulness for discussing the

effects of pulses with arbitrary rotation angles. Follow-

ing their approach, H€uurlimann introduced a concise

formalism for analyzing echo amplitudes and shapes for

free diffusion in the presence of off-resonance pulses [16].

He found that the amount of diffusional attenuation will

be different for different pathways and showed how that
leads to enhanced diffusion sensitivity of the total

magnetization in the CPMG. The aim of the present

paper is to understand how geometrical restriction to

the motion of the spins will affect the evolution of the

magnetization in a system with strong off-resonance.

The effects of restriction can be very pronounced.

Each coherence pathway includes spins at different local

Larmor frequencies which will be differently affected by
a given RF pulse. Consequently, each coherence path-

way will carry a signature spectrum given by the product

of the appropriate rotation matrix elements, each de-

pendent on the Larmor frequency, for the pulse se-

quence at hand (see Section 2). Although the spectrum

itself is unaffected by diffusion, its weight in the total
erved.
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magnetization will be, with the dependence stronger for
certain pathways than for others. Different sensitivity to

diffusion implies different sensitivity to restriction. The

spectrum of the total magnetization, then, and thus the

shapes of the echoes formed, will be changed from those

observed for unbounded diffusion. As we demonstrate in

Section 4, this phenomenon can be quite dramatic in the

long-time regime, when the spins have had ample time to

sample the extent of the confinement. Since in principle
every point in the spectrum contains all the information

of the on-resonance measurement, a thorough under-

standing of the effect of restricted motion on the total

spectrum could potentially allow a significant improve-

ment in the efficiency of data acquisition [18].

Our analysis will build on a recent paper [20], where

we used the Gaussian phase approximation (GPA) to

formulate a general framework for computing the effects
of restriction on an arbitrary coherence pathway for the

case of on-resonance RF pulses. Here we show how the

prior results can be generalized to off-resonance condi-

tions, provided that the inhomogeneity of the field DB
sampled by a diffusing spin in the duration t of the entire
experiment is small relative to the RF field strength. This

is precisely the case of interest in all the applications

referred to above. We will call this condition the small-

displacement approximation, since in most systems DB
will scale with the average distance traversed by the

spins. For diffusion in unbounded space or in a con-

nected porous medium, for example, in a uniform gra-

dient g, DB � g
ffiffiffiffiffiffiffi
D0t

p
, where D0 is the diffusion

coefficient of the bulk liquid. While in a suspension of oil

droplets of small diameter d, DBK gd would remain

bounded for all times, since the spin displacement would
saturate at the droplet diameter. We show that in the

small-displacement approximation, the effect of RF

pulses will separate from the diffusional attenuation,

which then can be computed independently, including

any effects of restricted motion.

Our formalism is applicable to arbitrary pulse se-

quences. As an illustration, we will use it to analyze the

first few CPMG echoes and show how the presence of
restriction, by differentially affecting the diffusional at-

tenuation rates of different coherence pathways, changes

the total spectrum of the echo, i.e., the total contribution

to the echo of spins at different Larmor frequencies.
2. Theoretical development

We follow the notation and the basic setup of [20]. To

a system of spins polarized in the z-direction, diffusing in

a restricted geometry in an inhomogeneous magnetic

field with z-component Bðx; tÞ, we apply an arbitrary

train of N RF pulses at times t1; t2; . . . ; tN . The spacings

between the pulses are given by sk � tkþ1 � tk, and we let

sN be the time measured from the N th pulse. Total
running time of the experiment from the first pulse is
then t ¼

PN
k¼1 sk. The RF field is given by

�2B1 cosðxRFt þ uÞ x̂x, where u is the phase of the pulse,

and is assumed to be uniform in space. We let x be the

offset of the local Larmor frequency from the RF fre-

quency, x � �cB� xRF, and let x1 � cB1 measure the

amplitude of the RF field. We then make the usual

definitions:

mþ � mx þ imy ;

m� � mx � imy ;

m0 � mz;

ð1Þ

where mx, my , and mz are the x, y, and z components of

the magnetization. A general RF pulse acts as a rotation

mixing all the magnetization components, mq ¼P
q0 Kq;q0mq0 , with q; q0 ¼ �1; 0;þ1. Here Kq;q0 denote the

rotation matrix elements that determine the fraction of

the magnetization transferred from the q0 to the q
component. Explicit expressions for the Kq;q0 were given

in [16], and we repeat them in Appendix A for the ease

of reference. Here we only emphasize that under off-

resonance conditions, i.e. when x1 cannot be assumed

infinite, the Kq;q0 will depend on x and thus on spatial

location.
The evolution of the magnetization can be naturally

analyzed in terms of ‘‘coherence pathways’’ mq, where

q ¼ fq0; q1; q2; . . . ; qNg. Here qk labels the particular

magnetization component after the kth pulse, with

q0 ¼ 0. We expound on the coherence pathway for-

malism in considerable detail in [20], while for un-

bounded diffusion, it is discussed in [16]. In essence, it

allows the decomposition of the transverse magnetiza-
tion after N pulses into a sum over all the relevant co-

herence pathways with the last component qN ¼ þ1

mðx; tÞ ¼
X
q

mqðx; tÞ: ð2Þ

Eq. (2) sums only over the coherence pathways starting
at the initial pulse. In general, if T1-relaxation effects are

significant, a fraction of the magnetization will relax

between the pulses into the longitudinal direction and

will form additional coherence pathway ‘‘trees’’ starting

at each pulse. This effect can be easily incorporated into

Eq. (2) (see [20]), and we leave it out here for the sake of

simplicity.

Between the pulses, the spins in a given coherence
pathway feel an effective field qðtÞBðx; tÞ, where qðtÞ ¼ qk
for t 2 ðtk; tkþ1Þ. Their dynamics are governed by a

generalization of the Torrey–Bloch equation

o

ot
mq ¼ D0r2

�
� icqðtÞBðx; tÞ � q2ðtÞ

T2

�
þ 1� q2ðtÞ

T1

��
mq;

ð3Þ
with the partially absorbing boundary condition at the

interface D0n̂n � rmq þ qmq ¼ 0. Here D0 is the bulk
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diffusion coefficient of the liquid, q is the surface re-
laxivity, n̂n is the unit normal vector at the pore sur-

face, and T1 and T2 are the longitudinal and transverse

bulk relaxation times. For simplicity, we will set q ¼ 0

throughout and so assume reflecting boundaries. We

will also suppress the T1 and T2 relaxation effects since

they can be trivially added at the end [16]. Each pulse

will introduce additional inhomogeneity into the re-

sulting magnetization via the spatially inhomogeneous
Kq;q0 , thus modifying the initial condition for the

subsequent evolution governed by Eq. (3). In general,

this would make the problem of a multiple-pulse se-

quence quite intractable. A simplifying approximation

can be made, however, for the case of sufficiently

small spin displacements.
2.1. Small-displacement approximation

We will call a displacement small if the corresponding

change in the spin�s magnetic environment is much

smaller than the magnitude of the RF field. The small-
displacement approximation will obtain when the aver-

age displacement of the diffusing spins is small

throughout the course of the measurement. Under such

conditions, we can to first order separate out the effects

of the pulses and diffusion for each coherence pathway.

This result, which we prove in Appendix B, hinges on

the fact that, for a given flip angle, the effect of the

pulses depends on the ratio of the offset frequency to the
RF amplitude x=x1. Thus, if a spin diffuses from some

initial xi to xi þ dx such that dx=x1 � 1, the pulses it

will feel throughout will not be much different from

those at the initial offset frequency xi. For a uniform-

gradient inhomogeneity, for example, BðxÞ ¼ g � x, this
condition requires that the width of the slice excited by

each pulse be much greater than the diffusion length

during the entire experiment, B1=g �
ffiffiffiffiffiffiffi
D0t

p
.

When the small-displacement condition is met, the

magnetization in the coherence pathway q at a given

point x will be weighted by the local value of the rota-

tion matrix elements near x. We can then write

mqðx; tÞ ’
YN
k¼1

Kqk ;qk�1

 !
~mmqðx; tÞ; ð4Þ

where ~mmq is the solution of Eq. (3) for all times, and not

just between the pulses. All the matrix elements are

evaluated at the same x and depend on position via

x ¼ �cBðxÞ � xRF. We will refer to the product of the

matrix elements
QN

k¼1 Kqk ;qk�1
as the spectrum of the

pathway q. We take the initial magnetization to be

uniform in space and set ~mmqð0Þ ¼ 1.

We note in passing that, if T1-relaxation effects are

significant, a fraction of the magnetization will relax
between the pulses into the longitudinal direction and
will form additional coherence pathway ‘‘trees’’ starting
at each pulse in the sequence. For the purposes of this

paper, we will ignore this extra complication. It can be

easily incorporated into the general formalism by first

summing over all the coherence pathways in the given

tree, as in Eq. (4) for the initial pulse, and then adding

up magnetizations from each tree. We explain the pro-

cedure in detail in [20]. As discussed in [16], for the

CPMG pulse sequence, for example, the effects of this
extra T1 relaxation can be eliminated by the use of ap-

propriate phase cycling.

A solution of Eq. (3) with appropriate boundary con-

ditions, ~mmq contains all the diffusional attenuation infor-

mation for the given coherence pathway. Since theKqk ;qk�1

are known functions of x, the knowledge of the relevant
~mmq�s and the magnetic field maps for the sample gives, via

Eqs. (2) and (4), the magnetization at all times.

2.2. Solution of the generalized Torrey–Bloch equation

Eq. (3)

Our approach to solving Eq. (3) will be to assume

that the distribution of phases of all the spins in a

pathway q arriving at x at time t, Px;tð/Þ, is Gaussian.

We note that this is a modification of the usual Gaussian
phase approximation (GPA) where one takes the dis-

tribution of the phases of all the spins to be Gaussian

(see, for instance, [11,20] and references therein).

In this approximation, ~mmq can be expressed in terms

of the first two moments of Px;tð/Þ

~mmqðx; tÞ ¼ exp

(
� ih/ðx; tÞiq �

h/2ðx; tÞiq � h/ðx; tÞi2q
2

)
;

ð5Þ
where

h/ðx; tÞiq � c
Z t

0

dt1 qðt1Þ
Z

dx0Gðx; x0; t � t1ÞBðx0; t1Þ;

h/2ðx; tÞiq � 2c2
Z t

0

Z t2

0

dt2dt1 qðt1Þqðt2Þ

�
Z

dx0dx00Gðx; x00; t � t2ÞBðx00; t2Þ

� Gðx00; x0; t2 � t1ÞBðx0; t1Þ: ð6Þ

The integrations extend over the total volume acces-

sible to diffusing spins, and Gðx; x0; tÞ is the diffusion

propagator satisfying otG ¼ D0r2G within the pore

space and D0n̂n � rGþ qG ¼ 0 at the interface, with the
initial condition Gðx; x0; 0Þ ¼ dðx0 � xÞ. As noted above,

we will consider only reflecting boundaries and thus set

q ¼ 0. The particular coherence pathway is encoded in

Eq. (6) via the qðtÞ factors.
Assuming uniform pick-up coils, the total contribu-

tion of a particular pathway to the signal measured at

time t, will be given by
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MqðtÞ ¼ dxmqðx; tÞ

¼
Z

dx
YN
k¼1

Kqk ;qk�1

 !
~mmqðx; tÞ; ð7Þ

and the magnetization will be the sum over all the
contributing pathways

MðtÞ
Mð0Þ ¼

X
q

MqðtÞ: ð8Þ

The leading-order short-time behavior of h/ðx; tÞiq
and h/2ðx; tÞiq is easily computed from Eq. (6), gener-

alizing the result in [21] to an arbitrary coherence

pathway

h/ðx; tÞiq ¼ c
Z t

0

dt0 qðt0ÞBðx; t0Þ;

h/2ðx; tÞiq � h/ðx; tÞi2q
2

¼ c2D0

Z t

0

dt0
Z t0

0

dt00 qðt00ÞrBðx; t00Þ
 !2

: ð9Þ

This formula is valid at all x separated by at least the

diffusion length LD ¼
ffiffiffiffiffiffiffi
D0t

p
from any confining walls,

and such that, near x, the field is well-approximated by

its gradient, i.e., if jx� x0j < LD then Bðx0; tÞ � Bðx; tÞþ
rBðx; tÞ � ðx0 � xÞ. In fact, asymptotically for short

times, Eq. (9) becomes the exact solution of Eq. (3),

since the GPA is exact in that limit.
3. Application to a uniform gradient

Now we specialize to the case of a uniform-gradient

field, Bðx; tÞ ¼ gðtÞ � x, which is of particular interest in

many applications.

3.1. Unbounded space

For a uniform gradient in unrestricted geometry, the

formulas in Eq. (9) become exact for all times, giving

~mmqðx; tÞ ¼ exp

�
� ikqðtÞ � x� D0

Z t

0

dt0 k2qðt0Þ
�
; ð10Þ

where

kqðtÞ � c
Z t

0

dt0 qðt0Þgðt0Þ; ð11Þ

is reminiscent of the k vector from imaging applications,

but with the effective gradient qðt0ÞgðtÞ in place of

gðtÞ. Eqs. (10) and (11) generalize to arbitrary coherence

pathways the free-diffusion results of Cotts et al.
[22].

If a pathway refocuses after N pulses at some time tq,
then using Eq. (7), with t > tN , we can write
MqðtÞ ¼ Afree
q ðtÞ

Z
dx ðcgÞ�1

YN
k¼1

Kqk ;qk�1
eixðt�tqÞ; ð12Þ

where g � jgðtÞj and we defined the free-diffusion

attenuation factor

Afree
q ðtÞ ¼ expf�D0

Z t

0

dt0 k2qðt0Þg: ð13Þ

The reason why the attenuation factor Afree
q ðtÞ and the

phase expðixtÞ could be factored is that, for a uniform
gradient in unbounded space, h/2ðx; tÞiq � h/ðx; tÞi2q is

independent of x. This will not be the case for arbitrary

field profiles or in restricted geometries since then each

frequency will be weighted with a different diffusion

factor. One could at this point compute h/2ðx; tÞiq and

h/ðx; tÞiq from Eq. (6) for simple closed geometries and

then study the effects of restriction on individual path-

ways, Eq. (7), as well as the total magnetization, Eq. (8).
However, we will be interested in the application to a

homogeneous porous medium, where a simplification

similar to that in unbounded space will take place due to

the averaging over an ensemble of many pores.
3.2. Restricted geometry: homogeneous porous medium

We now consider the case of a uniform gradient gðtÞ
applied across a macroscopically homogeneous medium.

By ‘‘homogeneous’’ we mean that for the purposes of

diffusion the spins in any given two-dimensional slice

of the medium feel, on average, the same amount of

structural confinement. More precisely, for an arbitrary

choice of coordinates, we assume that the probability

that a spin starting at some location in the yz plane at

x ¼ x1 will diffuse in time t to some location in the yz
plane at x ¼ x2, when averaged over all the initial and

final positions, depends only on the separation jx1 � x2j
and not on the absolute values of x1 and x2. Note that

this is possible even if locally the system is not spatially

invariant.

In a homogeneous medium defined in this way, it fol-

lows that, upon averaging over the plane transverse to the

gradient direction, h/ðx; tÞiq ! kqðtÞ � x, acquires the
form identical to the unbounded-space result. Impor-

tantly, a similar average of h/2ðx; tÞiq � h/ðx; tÞi2q will be
independent of the position along the gradient, ĝg � x. The
diffusional attenuation of a particular coherence path-

way, then, will be the same for all the frequencies, and

thus the same as for the purely on-resonance problem.

The structure of Eq. (12) will remain the same

MqðtÞ ¼ AqðtÞ
Z

dx ðcgÞ�1
YN
k¼1

Kqk ;qk�1

 !
eixðt�tqÞ; ð14Þ

but with the free-diffusion attenuation factor Afree
q ðtÞ

replaced by the general
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Table 1

Normalized short-time diffusion attenuation exponents gq, defined in Eq. (19), for all the coherence pathways contributing to the first three CPMG

echoes

Echo Coherence pathway g0
q Exact aq Numeric aq

N ¼ 1 {)+} 1 32
105
ffiffi
p

p ð2
ffiffiffi
2

p
� 1Þ 0.314

N ¼ 2 {+)+} 1 16
105
ffiffi
p

p ð33þ 8
ffiffiffi
2

p
� 27

ffiffiffi
3

p
Þ 0.211

{) 0+ } 2 4
105
ffiffi
p

p ð63þ 4
ffiffiffi
2

p
� 27

ffiffiffi
3

p
Þ 0.471

N ¼ 3 {)+)+} 1 32
315
ffiffi
p

p ð127� 16
ffiffiffi
2

p
þ 27

ffiffiffi
3

p
��125

ffiffiffi
5

p
þ 54

ffiffiffi
6

p
Þ 0.224

{+) 0+},{+0)+} 5
3

8
525
ffiffi
p

p ð375
ffiffiffi
5

p
� 216

ffiffiffi
6

p
��259� 8

ffiffiffi
2

p
Þ 0.336

{) 0 0+} 7
3

16
735
ffiffi
p

p ð108
ffiffiffi
6

p
þ 63� 125

ffiffiffi
5

p
Þ 0.590

{))++} 9 32
105
ffiffi
p

p ð2
ffiffiffi
2

p
� 1Þ

ffiffiffi
3

p
0.545

g0q is the unbounded-space value and aq gives the S=V correction. + and ) are a shorthand for +1 and )1, respectively, and we omitted the initial

magnetization label, q0 ¼ 0, which is the same for all the pathways.
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AqðtÞ ¼ exp �
h/2ðtÞiq � h/ðtÞi2q

2
: ð15Þ

Here

h/ðtÞiq ¼ V �1

Z
dx h/ðx; tÞiq;

h/2ðtÞiq ¼ V �1

Z
dx h/2ðx; tÞiq;

ð16Þ

with V denoting the volume of the pore space. We define

the total spectrum of an echo by
P

q AqðtÞ ð
QN

k¼1 Kqk ;qk�1
Þ,

where the sum extends over all the contributing coher-

ence pathways.

In the remainder of the paper, we will be interested in

computing mq at the echo time tq, where the phase

h/ðtqÞiq vanishes. Thus the echo-time attenuation factor
will be determined entirely by h/2ðtqÞiq.

1 The on-reso-

nance case was already treated in the earlier paper [20].

Results obtained there, in light of the discussion pre-

ceding Eq. (14), will directly apply to the present prob-

lem of off-resonance conditions in a porous medium.
4. Application to CPMG in a homogeneous porous
medium

We now specialize to the CPMG experiment, per-

formed in a porous medium with a constant gradient g
applied across the sample. In the presence of off-reso-

nance conditions, it is preferable to adjust the timing

between the initial 90� pulse and the first 180� pulse to

optimize the signal-to-noise characteristics [23]. Thus we
apply the initial 90� pulse around the x-axis at t1 ¼ x�1

1 ,

followed by a stream of 180� pulses around the y-axis at
t2 ¼ s, t3 ¼ 3s, t4 ¼ 5s, etc. For simplicity, we will as-

sume that t1 � s and thus set it to zero for the purposes

of computing the diffusional attenuation. The main
1 In fact, as long as the diffusional attenuation during T �
2 can be

neglected, one can set AqðtÞ � AqðtqÞ everywhere in Eq. (14).
effect of the adjustment relevant here, therefore, will be

the multiplication of the spectrum of each coherence

pathway
QN

k¼1 Kqk ;qk�1
by an extra factor of expð�iq1x=

x1Þ. In the remainder of this section, we will consider
both the short and long-time regimes and examine the

effects of restriction on the total magnetization.

4.1. Short-time regime

The short-time regime will obtain when the diffusion

length during s, LD �
ffiffiffiffiffiffiffiffi
D0s

p
, is much shorter than the

structural length scales in the medium as well as
the dephasing length LG � ðD0=cgÞ1=3 [9,11,24,25]. The

free-diffusion attenuation exponent will then acquire a

pathway-dependent surface-to-volume (S=V ) correc-

tion.

Explicit short-time formulas for h/2ðtÞiq for an ar-

bitrary coherence pathway at echo-formation time t ¼ tq
were derived in [20]. We quote them in Appendix C for

easy reference. As is clear from Eq. (C.4), one can al-
ways factor out of the total exponent the dimensionless

combination D0c2g2s3 ¼ ðLD=LGÞ6. We then follow [16]

in introducing for each pathway q the diffusion attenu-

ation exponent gq, normalized to be 1 for the N th direct

echo

2N
3

LD

LG

� �6

gq �
h/2iq
2

: ð17Þ

At echo time t ¼ tq the average phase h/ðtÞiq van-

ishes, and the attenuation factor in Eq. (15) becomes

AqðtqÞ ¼ exp

(
� 2N

3

LD

LG

� �6

gq

)
: ð18Þ

To bring out the effects of restriction, we further

write

gq ¼ g0
q 1

�
� aq

LDS
V

�
; ð19Þ

where g0
q is the unbounded-space attenuation exponent

computed in [16] and aq determines the amount of the

S=V correction. Using the formulas from Appendix C,
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we calculated g0
q and aq for the pathways contributing to

the first three CPMG echoes and list them in Table 1.

In unbounded space, for a given N , the direct echo

pathway is characterized by the smallest gq and will

therefore dominate at longer times. The S=V correc-

tions, however, are larger for the other coherence

pathways, thus slowing their decay more than that of the

direct echo. This trend will lead in the long-time regime

to a much faster decay of the direct echo than of the
pathways with some 0-component (longitudinal) seg-

ments. The total spectrum of the echo in the short-time

regime will deviate from its unbounded-space form in

Eq. (12) according to Eqs. (14) and (15), but we only

show the much more dramatic effect visible in the long-

time regime (see Fig. 1).
4.2. Long-time regime

The long-time regime sets in when LD is the longest

length in the system, longer than the structural lengths
Fig. 1. The spectra of all the coherence pathways contributing to the

third CPMG echo (rows 2–5) weighted with the appropriate diffusion

attenuation factor, plotted as a function of the normalized offset fre-

quency x=x1. The solid line represents the y channel and the dashed

line the x channel. The left column shows the unbounded-space results

for the diffusion length LD ¼ 0:3LG and the right column shows the

long-time regime in a one-dimensional pore of size LS ¼ LG and with

LD ¼ 8:2LG. The total spectra, top row, for both cases look completely

different due to the altered diffusional weighting of different pathways.
as well as the dephasing length LG. Asymptotic formulas
for the diffusional attenuation of an arbitrary coherence

pathway in this regime were derived in [20] and we quote

them in Appendix C. We note that the long-time for-

mulas given there are valid for an isolated pore, while

the validity of Eqs. (14) and (15) requires averaging over

a homogeneous medium. In order to observe the effects

described in this Section, then, one needs a system of

weakly coupled pores dispersed along the whole range
of off-resonance frequencies. An appropriate system

would be a suspension of oil droplets, or a simple one-

dimensional geometry of stacked parallel plates sepa-

rated from each other with layers of diffusing fluid, like

the sample used in [26].

For concreteness, in Fig. 1, we will consider the long-

time effects of restriction on the spectrum
P

q AqðtÞ
expð�iq1x=x1Þ

QN
k¼1 Kqk ;qk�1

of the third CPMG echo.
In addition to the direct echo, {0,)1,+1,)1,+1}, there
will be four other contributing pathways:

{0,+1,)1,0,+1}, {0,+1,0,)1,+1}, {0,)1,0,0,+1}, and

{0,)1,)1,+1,+1}. Two of them, {0,+1,)1,0,+1} and

{0,+1,0,)1,+1}, have identical spectra and identical

sensitivity to diffusion in all the regimes, so we only plot

one of them, remembering that it must be double-

counted when computing the complete spectrum. The
echo will form at tq ¼ 6s, and that is where we evaluate

AqðtÞ.
The first column in the figure contains the results for

unrestricted diffusion previously presented in [16]. Here

we have used ðLD=LGÞ6 ¼ 6:6� 10�5, small enough so

that all the pathways would be visible on the same scale.

Each row contains the spectrum
QN

k¼1 Kqk ;qk�1
of the

particular coherence pathway q, weighted by the corre-
sponding attenuation factor normalized by the attenu-

ation of the direct echo, Aq=ACPMG. The top panel shows

the total spectrum. In the second column we plot the

long-time regime in a one-dimensional pore of size

LS ¼ LG and with the diffusion length LD ¼ 8:2LG (see

Eq. (C.6)). The spectrum of each coherence pathway is

fixed by the RF pulses and does not change with pulse

spacings or diffusion. But the diffusional weight of each
pathway relative to the direct echo is much different in

the long-time regime, resulting in a dramatically altered

total echo spectrum. The direct echo, contributing

mostly to the on-resonance signal, has all but decayed

away, while the dominant contribution comes from

{0,)1,0,0,+1}. In general, for higher echoes, it will be

the pathways with the greatest number of 0-component

(longitudinal) segments that will set the attenuation
characteristics, while the on-resonance contribution of

the direct echo will be negligible. Incidentally,

{0,)1,0,0,+1} is nothing but the stimulated echo co-

herence pathway, with the prepare and read periods of

duration s and the store period of duration D ¼ 4s. We

discuss its sensitivity to restricted motion for the on-

resonance case in [20] in some detail.
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Two further points are worth emphasizing. First,
unlike in the familiar k-space imaging, the shape of the

spectrum in Fig. 1 does not directly reflect any struc-

tural features of the confining space, i.e., it does not

correspond to spin density in a given slice of the

sample, which is uniform by the homogeneous medium

assumption. Rather, it is determined by the interac-

tions of spins at a particular Larmor frequency with

the applied RF fields. And second, the fact that the
peaks of the spectrum occur near x=x1 � �1 is due

entirely to the particular train of RF pulses chosen,

which endows the stimulated echo pathway, dominant

in the long-time regime, with its spectral signature. For

the usual stimulated echo sequence of three consecu-

tive 90� pulses, the pathway {0,)1,0,0,+1} would have

a peak near x=x1 ¼ 0, and that is where the total

long-time echo spectrum would have most of its weight
as well.
5. Conclusion

We analyzed a macroscopically homogeneous po-

rous medium in a grossly inhomogeneous magnetic

field, where the excitation bandwidth of the RF pulses
is small relative to the spread in Larmor frequencies

throughout the sample. Under such conditions, each

pulse necessarily excites many coherence pathways,

with varying sensitivities to diffusion and hence to

geometrical restriction. The resulting spectrum con-

tains a wealth of information about the relaxation

processes, and, depending on which pathways con-

tribute, may show a much enhanced diffusion sensi-
tivity as compared to the on-resonance behavior. The

study of restricted motion in such systems is compli-

cated by the fact that each pathway contributes dif-

ferently. We developed a formalism to compute the

evolution of an arbitrary coherence pathway for the

case when the average field inhomogeneity experienced

by a diffusing spin is small compared to the RF

magnitude. This condition allows the separation of the
effects of the pulses from diffusional attenuation. For

short times, we found that restriction introduces a

pathway-dependent correction to the unbounded re-

sult, proportional to the pore surface-to-volume ratio.

In the long-time regime, the effects of restriction may

be very pronounced, strongly changing the spectrum

and the shape of a given echo. We applied our for-

malism to the CPMG in a grossly inhomogeneous
field and showed explicitly how the inclusion of the

additional coherence pathways excited by the weak

RF affects the response of the system to geometrical

restriction. This paper can be viewed as an extension

to off-resonance pulses and restricted geometries of the

work of Kaiser et al. [19] who considered a uniform-

gradient field in unbounded space.
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Appendix A. RF pulse rotation matrix

In this appendix we repeat after [16] the expressions

for the RF pulse matrix elements for an arbitrary fre-
quency offset xðxÞ ¼ �cBðxÞ � xRF and RF field

strength x1 ¼ cB1. X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2

q
is the total nutation

frequency, tp is the duration of the pulse and u its phase

as defined in Section 2.

Kþ1;þ1 ¼
1

2

x1

X

� �2�
þ 1

�
þ x

X

� �2�
cosðXtpÞ

�

þ i
x
X

� �
sinðXtpÞ; ðA:1Þ

K�1;�1 ¼
1

2

x1

X

� �2�
þ 1

�
þ x

X

� �2�
cosðXtpÞ

�

� i
x
X

� �
sinðXtpÞ; ðA:2Þ

K0;0 ¼
x
X

� �2
þ x1

X

� �2
cosðXtpÞ; ðA:3Þ

Kþ1;0 ¼
x1

X
x
X

1
�n

� cosðXtpÞ
�
� i sinðXtpÞ;

o
eþiu ðA:4Þ

K�1;0 ¼
x1

X
x
X

1
�n

� cosðXtpÞ
�
þ i sinðXtpÞ;

o
e�iu; ðA:5Þ

K0;þ1 ¼
1

2

x1

X
x
X

1
�n

� cosðXtpÞ
�
� i sinðXtpÞ;

o
e�iu;

ðA:6Þ

K0;�1 ¼
1

2

x1

X
x
X

1
�n

� cosðXtpÞ
�
þ i sinðXtpÞ

o
eþiu;

ðA:7Þ

Kþ1;�1 ¼
1

2

x1

X

� �2
1
�

� cosðXtpÞ
�
eþi2u; ðA:8Þ

K�1;þ1 ¼
1

2

x1

X

� �2
1
�

� cosðXtpÞ
�
e�i2u: ðA:9Þ

Appendix B. Separation of the effects of diffusion and

off-resonance RF pulses

In this appendix we show the validity of Eq. (4) for

the case of ‘‘small displacements’’ i.e., when the field

inhomogeneity sampled by a diffusing spin is much

smaller than the RF field strength. When Eq. (4) holds,

the dynamics of a given coherence pathway are com-

pletely described by Eq. (3) during the entire pulse
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sequence, with the effect of all the pulses well captured
by applying them all together at the very end.

We examine the magnetization mq of an individual

coherence pathway, with the first pulse applied at t1 ¼ 0.

Between the pulses, it evolves according to Eq. (3).

Suppose that immediately after the application of the

kth pulse it is equal to mqðtþk Þ. Then for t 2 ðtk; tkþ1Þ,
mqðtÞ ¼ U

q
t;tk mqðtþk Þ where U

q
t;tk is the pathway-dependent

evolution operator formally given by expfðt � tkÞ
D0r2 � i

R t
tk
dt cqðtÞB}. Here again we suppress bulk re-

laxation.

Then formally, mq after N pulses is given by

mqðtÞ ¼ Uq
t;tN

KqN ;qN�1
Uq

tN ;tN�1
KqN�1;qN�2

� � �Uq
t2;t1

Kq1;q0mð0Þ;
ðB:1Þ

where the KqN ;qN�1
operator denotes multiplication by the

corresponding pulse-rotation matrix element, and mð0Þ
is the initial magnetization in the z direction. We note

now that for a given phase and on-resonance tip angle of

the pulse, the Kq;q0 depend on the local Larmor fre-
quency offset xðxÞ only through the ratio ~xx � x=x1.

When computing mqðtÞ at x, we can expand around
~xx : Kq;q0 ð ~xx0Þ ’ Kq;q0 ð ~xxÞ þ ð ~xx0 � ~xxÞK0

q;q0 ð ~xxÞ þ � � �. Using

the fact that Uq
t;tk
Uq

tk ;tk�1
¼ Uq

t;tk�1
and collecting the terms,

we get, respectively, for the zeroth and first-order terms

in x�1
1 :

mð0Þ
q ðtÞ ¼

YN
k¼1

Kqk ;qk�1
ð ~xxÞ

 !
U
q
t;0mð0Þ

¼
YN
k¼1

Kqk ;qk�1
ð ~xxÞ

 !
~mmqðtÞ; ðB:2Þ

mð1Þ
q ðtÞ ¼

XN
k¼1

Kkð ~xxÞUq
t;tk
ð ~xxkþ1 � ~xxkÞUq

tk ;0
mð0Þ; ðB:3Þ

where we defined ~xxNþ1 � ~xx and

Kkð ~xxÞ �
K0

qk ;qk�1
ð ~xxÞ

Kqk ;qk�1
ð ~xxÞ

YN
j¼1

Kqj;qj�1
ð ~xxÞ

 !
: ðB:4Þ

Typically, U
q
t;tk ð ~xxkþ1 � ~xxkÞUq

tk � Dxk=x1 where

Dx2
k � c2hs�1

k

R tkþ1

tk
dt ½BðxiðtÞÞ � Bðxið0ÞÞ�2 ii is the en-

semble average over the trajectories xiðtÞ of all the spins.
It is a measure of the average amount of field inhomo-
geneity experienced by a diffusing spin during the inter-

pulse spacing sk. Then we have

mqðtÞ ¼
YN
k¼1

Kqk ;qk�1
ð ~xxÞ

 !
~mmqðtÞ þ O

P
Dxk

x1

� �
: ðB:5Þ

For a constant gradient field, for example,

Dx2
k � c2g2L2DðskÞ where L2DðskÞ � h½xðskÞ � xð0Þ�2i. For

the CPMG in the constant gradient, then, the condition
of validity of Eq. (4) is that NLDðsÞ be much less than the

thickness of the excited slice x1=cg.
Appendix C. Short and long-time on-resonance attenua-
tion of an arbitrary coherence pathway in a uniform

gradient

The following are the expressions for h/2ðtqÞiq at
echo time tq ¼

PN
k¼1 sk for an arbitrary coherence

pathway in a uniform gradient g obtained in [20]. The

setup and notation are the same as introduced in Section

2. In the GPA, h/2ðtqÞiq determines the diffusional at-

tenuation factor for a given pathway via Eq. (15).

h/2ðtqÞiq ¼
XN
k;l¼1

qkqlKkl ¼
XN
k¼1

q2kKkk þ 2c2
XN
k>l

qkqlKkl;

ðC:1Þ
where

Kkk ¼ 2sk I1ð0; skÞ � 2I2ð0; skÞ; ðC:2Þ
and for k 6¼ l,

Kkl ¼ I2ðtl � tkþ1; tlþ1 � tkþ1Þ � ½tl � tkþ1�
� I1ðtl � tkþ1; tlþ1 � tkþ1Þ þ slI1ðtlþ1 � tkþ1; tl � tkÞ
þ ½tlþ1 � tk�I1ðtl � tk; tlþ1 � tkÞ � I2ðtl � tk; tlþ1 � tkÞ:

ðC:3Þ
For short times, we have

I1ðt0; t00Þ ¼ �D0c
2g2

1

2
t002
�

� t02 � 16

45
ffiffiffi
p

p

� ðt002
ffiffiffiffiffiffiffiffiffi
D0t00

p
� t02

ffiffiffiffiffiffiffiffi
D0t0

p
Þ S

V

� ��
;

I2ðt0; t00Þ ¼ �D0c
2g2

1

3
t003
�

� t03 � 8

21
ffiffiffi
p

p

� ðt003
ffiffiffiffiffiffiffiffiffi
D0t00

p
� t03

ffiffiffiffiffiffiffiffi
D0t0

p
Þ S

V

� ��
;

ðC:4Þ
where S=V is the surface-to-volume ratio of the pore

space. The computation of h/2ðtqÞiq becomes a simple

mechanical matter of evaluating the explicit formulas

for I1ðt0; t00Þ and I2ðt0; t00Þ in Eq. (C.4) at the elements of

the pulse time partition defined in Section 2 according to
Kkl and Kkk in Eqs. (C.3) and (C.2), and summing them

up for the particular coherence pathway in Eq. (C.1).

For example, for the Hahn Echo coherence pathway

q ¼ f0;�1;þ1g, we would have �1=2 h/2iHE ¼ 2sI1
ðs; 2sÞ � 2sI1ð0; sÞþ 3I2ð0; sÞ � I2ðs; 2sÞ, with I1 and I2
given in Eq. (C.4). As noted in the text, for the purposes

of computing diffusional attenuation, we are neglecting

the corrective shift of the first echo, assuming s � x�1
1 ,

where x1 ¼ cB1 measures the strength of the RF

field.

In the long-time regime in a closed geometry, for an

arbitrary field BðxÞ, Eq. (C.1) simplifies to

h/2ðtqÞiq
2

! c2
XN

q2ksk

" #X b2n
kn

; ðC:5Þ
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where bn � V �1=2
R
BðxÞ/nðxÞ is the expansion coeffi-

cient of the magnetic field in the eigenbasis f/ng of the

Laplacian operator �D0r2 with reflecting boundary

conditions. For the CPMG, s1 ¼ sN ¼ s, and sk ¼ 2s for
k ¼ 2; . . . ;N � 1. Thus the first sum in Eq. (C.5) can be

written as
PN

k¼1 q
2
ksk ¼ 2sð1þ

PN�1

k¼2 q2kÞ and trivially

computed for any coherence pathway. For the N th di-

rect CPMG echo, for example, Eq. (C.5) immediately

gives 2Nsc2
P

n>0 b
2
n=kn in agreement with [11]. In a one-

dimensional box of size LS, the sum over eigenmodes can

be written in terms of integrals of BðxÞ, giving
h/2ðtqÞiq
2

¼ c2s
D0

2 1

 
þ
XN�1

k¼2

q2k

! Z x

0

Bðx0Þdx0
� �2

* +

¼ c2sg2L4
S

120D0

2 1

 
þ
XN�1

k¼2

q2k

!
¼ L2

DL
4
S

60L6
G

1

 
þ
XN�1

k¼2

q2k

!
:

ðC:6Þ
In the second line we evaluated the average for the

case of the uniform gradient, and in the third, we cast

the formula in terms of the lengths defined in Section

4.1, LD ¼
ffiffiffiffiffiffiffiffi
D0s

p
and LG ¼ ðD0=cgÞ1=3.
References

[1] C.H. Neuman, Spin echo of spins diffusing in a bounded medium,

J. Chem. Phys. 60 (1974) 4508.

[2] K.R. Brownstein, C.E. Tarr, Importance of classsical diffusion in

NMR studies of water in biological cells, Phys. Rev. A 19 (1979)

2446.

[3] J.C. Tarczon, W.P. Halperin, Interpretation of NMR diffusion

measurements in uniform- and nonuniform-field profiles, Phys.

Rev. B 32 (1985) 2798.

[4] P.P. Mitra, P.N. Sen, L.M. Schwartz, Short-time behavior of the

diffusion coefficient as a geometrical probe of porous media, Phys.

Rev. B 47 (1993) 8565.

[5] M.D. H€uurlimann, K.G. Helmer, L.L. Latour, C.H. Sotak,

Restricted diffusion in sedimentary rocks. Determination of

surface-area-to-volume ratio and surface relaxivity, J. Magn.

Reson. Ser. A 111 (1994) 169–178.

[6] R.M. Weisskoff, C.S. Zuo, J.L. Boxerman, B.R. Rosen, Micro-

scopic susceptibility variation and transverse relaxation: theory

and experiment, Magn. Reson. Med. 31 (1994) 601–610.

[7] T.M. de Swiet, P.N. Sen, Decay of nuclear magnetization by

bounded diffusion in a constant field gradient, J. Chem. Phys. 100

(1994) 5597.
[8] J.E.M. Snaar, B.P. Hills, Constant gradient stimulated echo

studies of diffusion in porous materials at high spectrometer fields,

Magn. Reson. Imaging 15 (1997) 983–992.

[9] L.J. Zielinski, P.N. Sen, Relaxation of nuclear magnetization in a

nonuniform magnetic field gradient and in restricted geometry, J.

Magn. Reson. 147 (2000) 95–103.

[10] Y.-Q. Song, Detection of the high eigenmodes of spin diffusion in

porous media, Phys. Rev. Lett. 85 (2000) 3878–3881.

[11] S. Axelrod, P.N. Sen, Nuclear magnetic resonance spin echoes for

restricted diffusion in an inhomogeneous field: methods and

asymptotic regimes, J. Chem. Phys. 114 (2001) 6878.

[12] R.L. Kleinberg, Well logging, in: Encyclopedia of Nuclear

Magnetic Resonance, vol. 8, Wiley, Chichester, 1996, pp.

4960–4969.

[13] G. Eidmann, R. Savelsberg, P. Bl€uumer, B. Bl€uumich, The nmr

mouse, a mobile universal surface explorer, J. Magn. Reson. Ser.

A 122 (1996) 104–109.

[14] P.J. McDonald, Stray field magnetic resonance imaging, Prog.

Nucl. Magn. Reson. Spectrosc. 30 (1997) 69–99.

[15] M.D. H€uurlimann, D.D. Griffin, Spin dynamics of Carr–Purcell–

Meiboom–Gill-like sequences in grossly inhomogenous b0 and b1
fields and application to NMR well logging, J. Magn. Reson. 143

(2000) 120–135.

[16] M.D. H€uurlimann, Diffusion and relaxation effects in general stray

field NMR experiments, J. Magn. Reson. 148 (2001) 367–378.

[17] Y.-Q. Song, Categories of coherences for the CPMG sequence, J.

Magn. Reson. 157 (2002) 82–91.

[18] D.E. Freed, M.D. H€uurlimann, U.M. Scheven, The equivalence

between off-resonance and on-resonance pulse sequences and its

application to steady-state free precession with diffusion in

inhomogeneous fields, J. Magn. Reson. (accepted).

[19] R. Kaiser, E. Bartholdi, R.R. Ernst, Diffusion and field-gradient

effects in NMR fourier spectroscopy, J. Chem. Phys. 60 (1974)

2966.

[20] L.J. Zielinski, P.N. Sen, Combined effects of diffusion, non-

uniform-gradient magnetic fields, and restriction on an arbitrary

coherence pathway, J. Chem. Phys. (accepted).

[21] G. Leu, X.-W. Tang, S. Peled, W.E. Maas, S. Singer, D.G. Cory,

P.N. Sen, Amplitude modulation and relaxation due to diffusion

in NMR experiments with a rotating sample, Chem. Phys. Lett.

332 (2000) 344–350.

[22] R.M. Cotts, M.J.R. Hoch, T. Sun, J.T. Markert, Pulsed field

gradient stimulated echo methods for improved NMR diffusion

measurements in hetergeneous systems, J. Magn. Reson. 83 (1989)

252–266.

[23] M.D. H€uurlimann, Optimization of timing in the carr–purcell–

meiboom–gill sequence, Magn. Reson. Imaging 19 (2001)

375–378.

[24] P.N. Sen, A. Andr�ee, S. Axelrod, Spin echoes of nuclear magne-

tization diffusing in a constant magnetic field gradient and in a

restricted geometry, J. Chem. Phys. 111 (1999) 6548.

[25] L.J. Zielinski, Effect of internal gradients on the NMR measure-

ment of the surface-to-volume ratio, J. Chem. Phys. (submitted).

[26] M.D. H€uurlimann, Spin echoes in a constant gradient and in the

presence of simple restriction, J. Magn. Reson. Ser. A 113 (1995)

260–264.


	Restricted diffusion in grossly inhomogeneous fields
	Introduction
	Theoretical development
	Small-displacement approximation
	Solution of the generalized Torrey-Bloch equation Eq. (3)

	Application to a uniform gradient
	Unbounded space
	Restricted geometry: homogeneous porous medium

	Application to CPMG in a homogeneous porous medium
	Short-time regime
	Long-time regime

	Conclusion
	Acknowledgements
	RF pulse rotation matrix
	Separation of the effects of diffusion and off-resonance RF pulses
	Short and long-time on-resonance attenuation of an arbitrary coherence pathway in a uniform gradient
	References


